

ENG-515 - 5G and IoT

Description

Current Telco architecture is transforming from being composed of vertically integrated discrete network elements to being cognitive, cloud-optimized and seamless in operation. Such next-generation networks will not be server-centric, but instead will focus on data and content requirements. Data and the applications that use it will be decoupled. The new network architecture will support easy scalability, have built-in security and privacy, enable energy efficient operation, offer lower Operational Expenses (OPEX), and flexibly support an extremely wide range of uses.

This 4-day course is designed to provide an overview of 5G and the Internet of Things (IoT), from a technical point of view.

Learning Outcomes

At the end of the course, participants will be able to:

- Identify 5G and IoT technology enablers and the features of both technologies
- Understand the detailed technical architecture and components of a 5G network
- Discuss the challenges of migration to 5G and some use cases of this new type of network
- Describe the applications and advancement of 5G, assess security considerations and the role of analytics and applications
- Understand what is IoT and describe the relationship between IoT and 5G
- Explain the architecture, layers and stack for IoT, and assess its features and requirements

Topics

The training course covers the following topics:DAY 1

• 5G and IoT Technology Enablers

- Dynamic Spectrum Access (DSA)
- Interference management
- Small cells
- Coordinated multipoint
- Mass-scale MIMO, massive MIMO
- Personal mobile internet
- Software-Defined Radio (SDR)
- Cognitive radio
- Smart-radio
- Multi-hop networks
- Direct device-to-device (D2D) communications
- Dynamic Adhoc Wireless Networks (DAWN)
- IPv6 and 6LowPAN
- Centralized RAN vs. cloud RAN
- NFV, SDN, and cloud networking
- Massive Machine Communication (MMC)
- Massive Internet of Things (IoT)
- Moving Networks (MN)
- Ultra-Dense Networks (UDN)
- Ultra-Reliable Communication (URC)
- Mobile ad hoc network (MANET)
- Wireless mesh network (WMN)
- Vandermonde-subspace frequency division multiplexing (VFDM)
- Millimeter-Wave
- 5G Cloud radio access network (C-RAN)
- \circ Ultra small cells based heterogeneous network (HetNet)

- Heterogeneous cloud radio access network (H-CRAN)
- Ultra Reliable and Low Latency Communication (URLLC)
- Full dimension MIMO
- Adaptive Coding and Modulation (AMC)
- Filter-Bank Multi-Carrier (FBMC)
- Frequency and Quadrature Amplitude Modulation (FQAM)
- 5G Introduction
 - Road map to 5G
 - 5G technology detail
 - Features of 5G
 - 5G spectrum needs
 - Evolution
 - Introducing the key concepts of 5G framework
 - Introducing the key components 5G architecture
 - Overview of cloud computing & SDN
 - Economic principles driving 5G & IoT

DAY 2

• 5G Architecture

The service-driven 5G network architecture aims to flexibly and efficiently meet diversified mobile service requirements. With software-defined networking (SDN) and Network Functions Virtualization (NFV) supporting the underlying physical infrastructure, 5G comprehensively cloudifies access, transport, and core networks.

- Objective of the architecture
- Architecture of 5G
- Differences from LTE
- Master core technology
- Flexible frame structure & design
- 5G design principles
- Flexibility
- Reliability
- Various components and functions
- Network softwarization and programmability
- Impact on mobile technologies
- Impact on service & infrastructure management and orchestration
- $\circ\,$ Key differences between 5G & previous cellular technologies
- Security- 5G planning using heuristic algorithm
- Dimensioning use of millimeter wave (mmw) carrier frequencies
- 5G Advancement

- 5G radio
 - 5G performance requirements
 - 5G spectrum; multi spectrum scenario
- Air interface
 - Software defined air interface
 - New multiple accesses ("no cell" concept)
 - Physical layer procedures, and coding
 - New modulations schemes
 - Channel models for 2.3 GHz, 2.6 GHz, 5.25 GHz, 26.4 GHz, and 58.68 GHz.
 - Advanced MIMO technology with wider bandwidths
 - Propagation modeling of densely populated urban areas
 - Beam forming, network discovery, and relaying
 - Coding and modulation algorithms
 - Interference management
 - Non-orthogonal, asynchronous waveforms
 - Millimeter-wave beam forming
 - Cooperative diversity and flexible modulation
- Radio Network Virtualization (Cloud RAN)

DAY 3

• Migration to 5G

- Challenges for migration
- Options
- Advanced features details
- How operators can move smoothly to 5G
- 5G use cases
 - Mobile broadband
 - Automotive
 - Smart society
 - Smart grids
 - Health
 - Industrial
 - Logistic/ freight tracking

• Applications of 5G

- Security considerations in 5G
 - Cloud security
 - Application security
- Role of analytics & applications in 5G
 - 5G use cases; smart cities, critical assets, smart homes, manufacturing etc.
 - Introduction to analytics (basic & advanced)
 - Role of analytics in 5G
- IOT & 5G

- 5G fundamental role in IoT
- Relationship between 5G and IoT
- Understanding the IoT & 5G frameworks
- 5G & IoT framework compatibility

DAY 4

• IoT Architecture and Layers

The reference architecture consists of different layers. Layers can be realized by means of specific technologies. There are also some cross-cutting/vertical layers such as access/identity management.

	Client External Communications Layer
Event Processing, Analytics and Storage Layer	
ce Management	Aggregation/Bus Broker Layer
	Relevant Transport and Communication Layer
Devi	Devices Layer

• IoT stack

- Device hardware (sensors, hardware/firmware)
- Device software
- Communication (device hub/gateway, device management...)
- Cloud platform (data management & intelligence, API design/build, API runtime

management, application PaaS (aPaaS), iPaaS middleware...)

• Cloud applications (website, mobile apps, mobile aPaaS...)

• Overview of IoT connectivity Methods and technologies

- ZigBee PRO, ZigBee 3.0 and ZigBee IP
- 6LowPAN
- RFID
- Bluetooth LE or bluetooth smart technology
- Z-Wave
- IEEE 802.15.4, IEEE 802.15.4e, 802.11ah
- 802.11ah, Wi-Fi HaLow
- GSM, CDMA, GPRS, 3G, LTE, small cells, SATCOM
- Sensors and sensor networks
- MIPI, M-PHY, UniPro, SPMI, BIF, SuperSpeed USB Inter-Chip (SSIC), Mobile PCIe (M-PCIe) and SPI
- Wired connectivity
- IPv4/IPv6

Target Audience

• Strategic or technical managers, consultants, communications professionals, network professionals and others who plan on using, evaluating or working with 5G wireless networks, applications and services, including IoT

Methodology

A combination of engaging activities and dynamic presentations to stimulate and maximize participants' learning.

Location

A selection of Neotelis' training courses is held in various cities around the world. Please contact us at <u>training@neotelis.com</u> for the complete Yearly Training Calendar.

Neotelis can also deliver in-house sessions of this course specifically for your organization. Please contact us at training@neotelis.com for more information and a Proposal.

About Neotelis

Neotelis provides training, consulting, conferences and publications to the telecommunications industry worldwide. Its team of senior experts has trained thousands of executives and managers working for operators, regulators, policy-makers and governments in over 120 countries around the world.

4802 de Verdun St, Office #1, Montreal, QC, H4G 1N1 Canada Tel: +1 514 281 1211 Fax: +1 514 281 2005 info@neotelis.com